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Kinetics of Nucleation in a Lattice Gas Model: 
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A method is described for calculating from first principles the coefficients in the 
Becker-D/Jring equations for the rate of change of the distribution of cluster 
sizes in a low-density lattice gas with Kawasaki dynamics. The method depends 
on solving a diffusion problem for the concentration of particles near a given 
cluster. The coefficients are calculated for cluster sizes up to 6, on a simple cubic 
lattice at a temperature 0.59 times the critical temperatures, and extrapolated to 
larger sizes. The resulting version of the Becker-D~ring equations is then solved 
numerically. Comparison with the results of a computer simulation (at overall 
concentration 0.075) carried out by Kalos and others indicates that the method 
gives quite good predictions of the dependence of the cluster distribution on the 
critical cluster size (usually denoted by l*) but that the predicted rate of change 
of critical cluster size with time is too small, at this overall concentration, by a 
factor of about 0.3. 

KEY WORDS: Kinetics; phase transitions; nucleation; lattice gas; 
Becker-D6ring equations; clusters. 

1. INTRODUCTION 

The system of kinetic equat ions put  forward by  Becker and  D6r ing  (1) in 

1935 is well established as the basis for successful t reatments  of some topics  

in phase t ransi t ion kinetics, such as metastabi l i ty  anO Ostwald ripening. 
The  physical basis of these equat ions  is that droplets of the new phase grow 
or shrink by absorbing  or emit t ing particles one at a time. For  each size of 

droplet, the equat ions  conta in  two kinetic coefficients, one giving the 
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probability per unit time that the droplet will emit a particle, the other 
giving the probability that it will absorb a particle. The normal methods for 
calculating these coefficients (2) depend on treating the droplets as if they 
were spheres of the new phase; this assumption is, however, obviously 
invalid for "droplets" consisting of only a few particles and is in any case 
difficult to relate quantitatively to the basic microscopic model. The diffi- 
culty of establishing such a relationship has already led to much contro- 
versy in the treatment of metgstability. (3) 

It is the purpose of this paper to describe, for a particular microscopic 
model, how the kinetic coefficients can be calculated directly from micro- 
scopic quantities. These kinetic coefficients, when used in the Becker- 
D6ring theory, give a system of differential equations which can be inte- 
grated numerically to predict how the distribution of cluster sizes varies 
with time. At the end of the paper these predictions are compared with the 
results of computer simulations of the same microscopic model carried out 
by Kalos et al.(4) and also with some experimental results due to Ardell et 
al. (5) 

The model to which our results apply is the Ising model on a cubic 
lattice, with Kawasaki dynamics. (6) This is a model of a binary alloy in 
which each lattice site is occupied by one atom and the state changes with 
time according to a Markov process where the allowed transitions are 
interchanges of the atoms on two neighboring sites. The model is mathe- 
matically equivalent to a lattice gas, with each site either empty or occupied 
by a particle, in which case the allowed transitions are jumps of any 
particle to any neighboring empty site. In either case, a nearest-neighbor 
attractive interaction law is assumed, and the transition probabilities are 
chosen in accordance with a detailed balancing condition which includes a 
specification of the temperature. 

The Becker-D6ring theory assumes that the new phase consists of 
widely separated droplets or nuclei immersed in the old phase. This requires 
one of the components of the alloy (the one which predominates in the new 
phase) to have a relatively small overall concentration. At such concentra- 
tions it is convenient to use a lattice gas picture, regarding the minority 
atoms as "particles" and the majority atoms as "empty sites," We can then 
describe the configuration in terms of clusters, a cluster being defined as a 
maximal connected set of particles (i.e., of minority atoms), and to identify 
the clusters with the "droplets" in the Becker-D6ring theory. It was pointed 
out by Lifshitz and Slyozov, (7) and by Wagner, (8) that the rate of change of 
the average number of particles in a large spherical cluster can be found by 
treating the motion of the other particles near by as a diffusion problem. 
What we have done in this paper is to apply a similar idea to the motion of 
the particles near a cluster of any size: we express the Becker-D6ring 
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kinetic coefficient in terms of the solution of a lattice diffusion problem 
describing the motion of the other particles near a specified cluster, with 
suitable boundary conditions at infinity and at the surface of the cluster. 

2. THE KINETIC EQUATIONS 

To describe the distribution of cluster sizes we define c t to be the 
concentration of /-particle clusters (i.e., the number of such clusters per 
lattice site). The Becker-Drring equations give the time rate of change of c t 
a s  

dcl 
dt  - J l - 1  - ,It (l = 2,3 . . . .  ) (2.1) 

where Jl is the net rate of conversion, per unit volume, of /-particle to 
(l + 1)-particle clusters. It is given in this theory by 

,It = a tc lc t  - b , + , c , + ,  (l = 1,2 . . . .  ) (2.2) 

The kinetic coefficients a l and bt+ 1 are independent of the individual 
cluster concentrations c 1, c 2 . . . .  though they may depend on more general 
properties of the system such as the overall concentration of particles, 

0 = E it, (2.3) 
l = 1  

The concentration of monomers (one-particle clusters) does not satisfy an 
equation of the form (2.1) but can instead be determined from the conser- 
vation law 

d 
l~=l lC, = 0 (2.4) 

Further details about the derivation of these equations can be found 
elsewhere. O) 

Before embarking upon the analysis of diffusion near a cluster, we 
note a simple relation between a / and bl+ l, which follows from the fact that 
(by detailed balancing), Jt = 0 at equilibrium. The equilibrium cluster 
concentrations e} eq~ are given approximately (l~ by the empirical formula 

r = I (  1 - P) 3W (l = l )  (2.5) 
L (1 p ) 4 Q t w '  ( l  >1 2) 

where w is a parameter and QI is the "cluster partition function" at the 
relevant temperature. The definition of Qt is(t~ 

Q, = ~.~ e ~b( lO / ~ r  (2.6) 
K 
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where the sum is over all translationally inequivalent /-particle clusters, 
b(K)  is the number of nearest-neighbor pairs of particles in the cluster K, 
and U is the binding energy per pair (i.e., U is the energy required to 
separate a pair of neighboring minority atoms). 

Substituting (2.5) into (2.2) and using the detailed balance condition 
Jt = 0 we obtain (11) 

bt+ 1 _ J'(1 -- p)2w t ( / =  1) 
(2.7) 

at /,(1 - O)3wt (/>1 2) 

where 

Ol w/= .Q,+~ (l 1> 1) (2.8) 

At the temperature where the simulations were carried out, T = 0.59 T c 
with T c the critical temperature, the ratio w t satisfies (~2) an approximate 
empirical relation of the form 

[ C ] ( 3 < / < 9 )  (2.9) wz'~w~ 1 +  ( /_2 )1 /3  

with w~ = 0.010526 and C = 2.415. A similar empirical relation, with differ- 
ent values for w~ and C, holds at other temperatures. 

To calculate the absolute, as opposed to the relative, values of a I and 
bt+ l we need more specific assumptions about the dynamical model. It is 
usual to assume that the probability per unit time of a transition from 
configuration X to a configuration Y, obtained from X by moving just one 
particle to a vacant neighboring site, depends only on the energy change 

AE = E ( Y )  - e ( x )  (2.10) 

where E ( X )  is the energy of configuration X. For each integer n, we shall 
denote by p, the probability per unit time of any given transition which 
increases the energy by n U; then the detailed balance condition gives 

P - x / P ,  -- 0" (2.11) 

where 0 = e t:/~r. The actual choice of p,  used in the simulation was 

1/3 
P" - 1 + 0" (2.12) 

where the unit of time is one attempted interchange per site. In the limit of 
low densities, the diffusion constant for this model is equal to P0 = 1/6, 
where the unit of distance is one lattice spacing. 
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3, A METHOD FOR CALCULATING THE KINETIC COEFFIC IENTS 

One thing that can be seen at once from the ratio formula (2.7) is that 
at least one of at and bt+ 1 must depend on the overall concentration O. To 
begin with, however, we shall consider their values in the limit of very small 
p, which we shall denote by at(0) and bl+ l(0). To illustrate the method, let 
us consider the calculation of the particular coefficients a2(0 ) and b3(0 ). The 
equation in which they appear is (2.2) with l = 2, 

J2 = a2(0)ClC2- b3(O)e3 (3.1) 

in which the first term on the right gives the mean number of two-particle 
clusters per site per unit time which become three-particle clusters, and the 
second term gives the mean number of three-particle clusters per site per 
unit time which b~ecome two-particle clusters. Dividing on both sides by c 2 
gives 

J2 c3 
c2 - a2(0)c , - b3(O)--c2 (3.2) 

where the first term on the right now gives the probability per unit time that 
a given two-particle cluster becomes a three-particle cluster. 

In Fig. 1 the two-particle cluster is indicated by black dots, and sites at 
which a third particle may arrive to add itself to the cluster are indicated by 
circles. For  the two-dimensional square lattice there are 6 such sites, as 
shown in Fig. 1, but for the cubic lattice there are 10. We want to calculate 

S" I 

S' 

Fig. 1. A two-particle cluster and the sites at which a third particle can attach itself to the 
cluster. 



224 Penrose and Buhagiar 

J2/c2 by calculating the probability per unit time that a particle will arrive 
at one of the encircled sites, less the probability per unit time that a particle 
will leave one of these sites. 

Let f(x) denote the conditional probability of finding a particle at the 
lattice site x, given that the two sites marked in black are occupied. If x is 
one of the sites marked with a circle, then f(x) is related to the probability 
that a three-body cluster is present; otherwise it is related to the probability 
that there is a one-body cluster near the two-body cluster shown in Fig. 1. 
In the low-density limit we may assume that no other particles, apart from 
the one which may be at x and the ones in the two-body cluster, are near 
by; if we also neglect the possibility of the two-body cluster breaking up, 
we obtain from the Kawasaki dynamical assumption the condition 

af(x) 
dt - 2 [ f (y)p(y ,x)  - f ( x ) p ( x , y ) ]  (x $ S)  (3.3) 

r 

where p(x,y) is the probability per unit time [as given by (2.12)] that a 
particle initially at lattice site x will jump to y, and S denotes the set of all 
sites that are adjacent to the given cluster. 

Provided that the cluster distribution changes slowly enough with time 
(an assumption which will be looked at in Section 8) we can replace (3.3) 
approximately by the steady-state condition 

~, [ f (y)p(y,x)  - f (x)p(x,y)]  = 0 (x ~ S)  (3.4) 
r 

For all sites x which are not nearest or second nearest neighbors of the 
two-body cluster shown, Eq. (3.4) reduces to the finite-difference analog of 
Lapace's equation, 

~ '  [ f (y)  - f (x)]  = 0 (3.5) 
Y 

where the sum is over all nearest neighbors of x. For the second-nearest- 
neighbor sites, however, the more general equation (3.4) must be used, since 
some of the possible transitions change the energy. 

The boundary conditions for the difference equation describe what 
happens at infinity and at the sites adjacent to the two-body cluster. At 
infinity we have, assuming widely separated parts of the system to be 
statistically independent, 

f(x) ~ c 1 as Ixl---) oo (3.6) 

For adjacent sites, the relevant condition describes the fact that if the 
third particle is at one of the sites marked by circles in Fig. 1 then we have 
a three-body duster. The probability per unit volume of finding the 
particular three-body cluster, for which the third particle is at a particular 
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nearest-neighbor site x, is (in three dimensions) �89 c2f(x); the factor 1 arises 
because there are three possible orientations for two-body clusters, so that 
the orientation shown has probability �89 c 2 per unit volume. To relate this to 
c3, the concentration of three-body clusters, we write 

= ' " ( 3 . 7 )  6"3 C3 -[" C3 

where c~ is the concentration of straight three-body clusters and c~' that of 
bent ones. Since there are three different orientations for straight clusters, 
the probability of any one such cluster is i , 3 c3- Hence we have (using the 
notation defined in Fig. 1) 

�89 ) = '  , 3c 3 , i.e., f ( s ' ) =  c'31c 2 (3.8) 

Similarly, since there are 12 different orientations for the bent three-body 
clusters, we have 

�89 ) = ~ c  3 1  ,,, i.e., f (s")  = c~'/4c 2 (3.9) 

Combining (3.8) and (3.9) with (3.7) we obtain 

f(s ' )  + 4f (s ' )  = c3/c  2 (3.10) 

To complete the specification of the difference equation we need to 
specify f(s') and f(s") individually as well as the weighted average (3.10). 
The most logical way of taking this into account would be to go over to a 
more complicated system of kinetic equations which included information 
about the shapes of the various clusters as well as their sizes; for example it 
would include separate equations for c~ and c3'. For simplicity, however, we 
used instead the approximation of assuming that c~ and c~' always have the 
same ratio as at equilibrium, which is 

t !  

c3 12 
- - 4 ( 3 . 1 1 )  

' 3 c3 

Some measure of justification for this assumption is provided by the 
observation that in the simulation the nonequilibrium distribution of the 
sizes of the small clusters was found to be very close to an equilibrium 
distribution; this gives some grounds for hoping that, at least for small 
clusters, the same may be true of their shapes. The effect of the assumption 
(3.11) is, by (3.8) and (3.9), to supplement (3.10) with the condition 

f(s ' )  --- f (s")  (3.12) 

The difference equation (3.4), together with the boundary conditions 
(3.6), (3.10), and (3.12) gives a system of linear equations which can be 
shown to have a unique solution. By the superposition principle, this 
solution depends linearly on the parameters c 1 and c3/c  2 in the boundary 
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conditions: 

f (x)  -- c l f l (x  ) + (c3/c2)f:(x) 
The function fl can be found by solving the difference equation (3.4) under 
the conditions 

f x ( x ) ~ l  as x ~ o o  
fl(x) = 0 for x E S (3.13) 

The function f2 can be found [provided condition (3.12) is valid] by solving 
the difference equation (3.4) under the conditions 

f2(x) --> 0 as x--> oo 
f2(x) = ~ for x E S (3.14) 

Once the solution of the difference equation with the boundary condi- 
tions (3.6) and (3.12) is known, we can calculate J2/c2, as the probability 
per unit time that the two-body cluster we are considering will be converted 
to some three-body cluster. This rate is equal to the sum, over any closed 
surface which encloses the two-body cluster and does not pass through ally 
lattice sites, of all the "probability flows" 

f (y)p(y ,  x) - f (x )p  (x, y) (3.15) 

along bonds which cross the surface, using a sign convention in which an 
inward flow counts as positive. By (3.4) and the finite difference analog of 
the divergence theorem, the quantity so defined is the same for all such 
surfaces, so we may calculate it using a large sphere. At large distances our 
difference equation (3.5) may be approximated by the Laplace equation, 
and the probability flow along a bond in the x direction by -poaf/Ox. In 
this approximation the total inward flow across a surface S is given by a 
surface integral 

J2 -po f ~ndS (3.16) 
C 2 

where O/an denotes the outward normal derivative. At large distances the 
solution of the difference equation (3.5), with the boundary condition (3.6), 
has the same asymptotic form as that of Laplace's equation, namely, 

/ ( x ) ~ c  1 - A//r + O(1//r 2) (3.17) 

where r is the Euclidean length of the position vector x, and A is indepen- 
dent of x. The vector x may be measured from any origin, but the 
correction terms are smallest if the origin is at the center of the two-body 
cluster. Putting (3.17) into (3.16) we obtain 

J2/c2 = 4~rpoA (3.18) 
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By the superposition principle, the number A must depend linearly on the 
boundary conditions for the difference equation; that is, it has the form 

A = A lC  1 "1" A 2 c 3 / c  2 (3.19) 

Substituting (3.18) and (3.29) into (3.2) we see that 

a2(0) ---- 4rrp0A 1, b3(0 ) = - 4~'p0A 2 (3.20) 

However, since a2(0 ) and b3(0 ) are related by the detailed balance condition 
(2.7) (with p = 0) one need only calculate one of A 1 and A 2. We chose to 
calculate A l- This was done by solving the difference equation (3.4) with 
the boundary condition (3.13); for this solution the coefficient A in (3.17) 
is, by (3.19), equal to A l, since the boundary condition is equivalent to 
taking c I = 1 and c 3 / c  2 = O. 

The method we have described can in principle be used for any pair of 
kinetic coefficients (al(0), bt+ l(0)). The only new features are as follows: 

i. For 1 = 1 the values of a I and b 2 are twice as big as the formula 
(3.21) would suggest, because in this case both the clusters being considered 
can move. 

ii. For l/> 3, Eq. (3.12) has to be generalized since not all sites of S 
have the same number of neighbors in the fixed cluster. The appropriate 
generalization is a Gibbs distribution over S: 

f(s) = const • O n~s) (s E S)  (3.21) 

where n(s) is the number of sites in the/-particle duster that are adjacent 
to s. Our method of calculation based on the boundary conditions (3.13) 
allows for the new feature (ii) automatically. 

iii. For ! ~> 3 it is necessary to solve more than one difference 
equation problem, because the central cluster can take different shapes 
(e.g., straight and bent in the case l = 3). In accordance with the principle 
used to obtain (3.11), these were aggregated by assuming that the different 
shapes for the central cluster were present in the same proportions as they 
would be at equilibrium. 

At the temperature for which we did our calculations, the kinetic 
coefficients for differently shaped clusters of the same size were found to 
differ by at most 10%, and so the effect of deviations from the assumed 
proportions is unlikely to be important. 

4. RESULTS OF THE CALCULATION OF KINETIC COEFFIC IENTS 

Since the function f(x) satisfies the finite-difference analog of La- 
place's equation at all sites of the lattice except for a finite set on and near 
the central fixed cluster, the appropriate solution of the difference equa- 
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tions can be expressed in the form 

f (x )  = c 1 -b E a (x, y) q (y) (4.1) 
Y 

where G(x, y) is the Green's function for the finite-difference Laplacian and 
q is a function with finite support on the lattice. The conditions which f (x)  
must satisfy then reduce to a finite system of linear equations for the values 
taken by q(y) at different lattice sites y. Solving this system of equations for 
the cases l = 1 and l = 2 we found that 

l l .62p_f f l  + 0.233,/) 11.62p_~ 

a~(0) = 1 + 0.8333, + 0.134772 ~ 1 + 0.63' (4.2) 

14.474p_1(1 + 0.9013, + 0.26072 + 0.0243' 3) 14.47p_~ 
"-~ (4 3) 

1 + 1.5477 + 0.83672 + 0.18773 + 0.0153' 4 1 + 0.643' 
a2(0)  = 

where 

3' ~" ] 7 - 1 / P 0  - -  1 ( 4 . 4 )  

For l larger than 2 we found it more convenient to use a direct 
numerical solution of the difference equation. This was done by the S.O.R. 
method, replacing the boundary condition at infinity by an approximate 
condition of the form 

f (x )  = C 1 - -  K / r  (4.5) 

on the surface of a large box containing the cluster. The unknown K was 
related to the other unknowns by a condition based on the finite difference 
analog of the divergence theorem. To check that the approximation (4.5) 
was not affecting the accuracy we repeated the calculation for boxes of 
different sizes, obtaining results that were the same to three decimal places 
for a l (1 < l < 3) for boxes of sizes 9, 10, and 11, and for a wide range of 
parameters 7. Some results of these calculations are shown in Table I. As l 
increases the calculations rapidly become more complicated; for this reason 
we only did them for l < 6. 

As a check on the calculation as a whole, we solved (3.4) by the S.O.R. 
method for l = 1 and l = 2. The results (also shown in Table I) agreed well 
with Eqs. (4.2) and (4.3). 

In order to solve the Becker-D6ring equations we need values of al(0 ) 
for values of l beyond 6. These were obtained by extrapolation. If we 
assume that a large/-body cluster behaves like a sphere of radius propor- 
tional to l 1/3, then it follows (12) that a I is asymptotically proportional to 
l 1/3 for large l. A formula satisfying this condition which also fits the 
calculated values of a t quite well for l < 6 is 

a,(O) = ~ [M +Nl]  '/3 (4.6) 
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Table I. Zero-Density Kinetic Coefficients at(0 ) for a Cubic 
Lattice at Temperature 0.59T c ( T  c = Critical Temperature) 

which Corresponds to U/kT = 1.5. The Values of M and N 
for Eq. (4.6) were M = 874, N = 1888 

at(0) 

l Eqs. (4.2) and (4.3) S.O.R. Eq. (4.6) 

1 2.30 2.29 2.34 
2 2.80 2.81 2.78 
3 3.17 3A2 
4 3.34 3.39 
5 3.63 3.63 
6 3.78 3.84 

where M, N are constants depending on temperature.  Table  I shows that  at 
the temperature 0.59T~ the accuracy  of formula  (4.6) is about  1�89 for 

l < 6. The formula  (4.6) also gives (13) a good representat ion (for l < 6) at 
other temperatures;  see Table II  for some details. 

As a working hypothesis, then, let us assume that Eq. (4.6) gives a 
satisfactory approximat ion  to at(0 ) for all values of l, at the temperatures 
we are interested in. The corresponding approximat ion to bt+l(0) can be 
deduced f rom (2.7) and (2.9); it is 

I [ I + C ] (M + NI) 1/3 (4.7) 
= g (l - 2) 

In  order to make useful predictions f rom the Becker -D6r ing  equations, 
however, we need values for a t and  b,+ 1 at nonzero  values of the overall 
concentra t ion p; and  Eq. (2.7) implies that  at least one of them varies by a 
factor  of order (1 - / ) )3  when t) is varied. One might  expect al(o ) to be larger 
than a,(0); for al(0 ) is a measure of the rate at which fresh particles arrive 

Table II. Values of the Kinetic Coefficients at(0 ) and also of the 
Numbers M, N in Eq. (4.6) at Various Temperatures 

al(O) 

T P-1 1 l=l  l=2 l=3 l=4 l=5 l=6 M N 
T~ P0 

0.0 1.937 2.415 2.750 2.924 3.208 3.360 341 1324 
2.18 0.2 2.077 2.567 2.922 3.086 3.383 3.533 558 1519 
1.04 0.4 2.187 2.691 3.046 3.223 3.509 3.663 799 1663 
0.64 0.6 2.279 2.792 3.149 3.325 3.609 3.761 1040 1776 
0.40 0.8 2.359 2.876 3.233 3.405 3.671 3.826 1341 1837 
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at the surface of an/-part icle  cluster given a standard density of monomers 
at infinity, and at larger densities we may expect more particles to arrive, 
since more of the arriving particles may have traveled as members  of 
dimers or other small clusters, rather than as monomers.  

Rather than attempt a detailed theory of these effects we shall simply 
allow for them crudely by multiplying all of the kinetic coefficients a t by an 
empirical factor which, for generality, we may assume for the present to 
depend not only on the total concentration p but also on the concentration 
of small clusters as measured, for example, by the value of c 1. Thus we shall 
assume 

a, (p) = pa t (0) (4.8) 

where /~ =/~(O, Cl). When (4.8) is substituted into (2.2) and then (2.1) we 
obtain a system of equations which can be written 

dct _ j(0) _ jr(o) (l  = 2,3, ) (4.9) 
d,r 1 - -1  " ' "  

where 

"r = fotlxdt (4.10) 

j(0) = al(0)[  c 2 _ (1 - 0)2wlc2] 

.It (~ = at(O)[clc  t - (1 - p)awtct+l] (l = 2,3 . . . .  ) (4.11) 

These equations have a form very similar to that which applies to zero 
density, but the time variable is rescaled by a factor # which may  itself 
change with time, and whose value is not given by the theory as it stands at 
present. This rescaling permits us to solve the Becker-D6ring equations for 
nonzero p without knowing anything about the value of #. This value, and 
the way it depends on time, can be found empirically afterwards by 
comparing the calculated solution with the results of computer simulations. 

5. SOLVING THE BECKER-DORING EQUATIONS NUMERICALLY 

In order to construct a numerical solution of the system of equations 
(4.9) and (4.11) we must choose a temperature T, a density p, and a set of 
initial values for c 1, c 2, c 3 . . . .  compatible with the sum rule (2.3). In our 
calculations we used a temperature T such that U / k T =  1.5 (i.e., T =  
0.59 T~, where T c is the critical temperature) and various values for the total 
concentration p, most notably p = 0.075 (i.e., 7.5% of the sites are occu- 
pied). The temperature 0.59T c is one for which a number  of simulation runs 
have been done (~~ and for which the values of w s, C, M ,  and N are known. 
The concentration 0.075 is the one for which the longest of the simulation 
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Table III. Comparison of Values for the 
Number of Clusters Observed in the 

Simulation on a 50 • 50 x 50 Cubic Lattice 
with Values Implied by the Formula (2.5) 

for p = 0 .075 and T = oo ( i .e . ,  0 = 1). 

Number of Clusters = 125000c l 

l Simulation Formula 

> 

1 5790 5866 
2 965 965 
3 310 286 
4 88 97 
5 35 36 
6 11 14 
7 11 6 
8 4 2 
9 1 1 

10 0 0 
10 1 0 

runs was carried out, and for which a detailed analysis of the long-term 
behavior is available. (12) 

In the simulations, the initial positions of the particles were chosen 
randomly and independently; that is, the initial configuration corresponded 
to equilibrium at infinite temperature. To reproduce this initial condition in 
our numerical integration of the Becker -Drr ing  equations, we used as 
initial values c 1, c 2 . . . .  for t = 0 the equilibrium values predicted by the 
theory of Section 2 for infinite temperature. That  is to say we used the 
formulas (2.5) and (2.6) with p = 0.075 and U/kT = 0, the value of w in 
(2.5) being chosen so that (2.3) was satisfied with p = 0.075. 

These theoretical values of c 1 are shown in Table III ,  together with the 
values obtained in the simulation run. There is no significant deviation 
between them: the simulation results are consistent with the empirical 
formula (2.5). 

To integrate the Becker-D6ring equations numerically it was neces- 
sary to truncate the system at some large value, say L, of the subscript l. 
This can be done either by requiring JL = 0 for all times t or cL = 0 for all 
times t, in place of the value given by Eq. (2.1) or (2.2) for l = L. We chose 
the condition JL = 0, with L = 800. Our reason for choosing L = 800 was 
that in the simulation no cluster larger than 800 was ever observed. 
Moreover, no more than one cluster larger than 600 was ever observed, so 
that the simulation data concerning values of c l with l > 600 are subject to 
large fluctuations and there is little point in trying to compute very accurate 
values of ct f rom the Becker-D6ring equations to compare them with. We 
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believe that the accuracy of our values of c t, over the entire time interval 
considered, is no worse than 10% for l = 600, and is correspondingly better 
than this for smaller values of l; this estimate was obtained by comparing 
the solution for L = 800 and a similar solution for L = 1600. 

A convenient way of estimating the value of the empirical factor/~ is to 
study the evolution of the distribution of small clusters. We take advantage 
of the fact that for any but the very earliest times the instantaneous 
distribution of small clusters (l < 10) can be fitted quite well by the 
equilibrium formula (2.5), with a value of w which decreases as time 
progresses. When solving the Becker-D6ring equations, w is conveniently 
calculated from c I using the formula [based on (2.5)] 

c ,  = ( 1  - o)3w (5.1) 
For the simulations, the effect of fluctuations can be reduced by consider- 
ing instead clusters of sizes up to (say) 10 and calculating w from the 
formula 

10 10 
E lc' = (1 --  p)3w q- (1 -- /9) 4 E lQtw' (5 .2)  
l=1 1=2 

where the numbers c t are observed cluster concentrations. In practice the 
effect of fluctuations was further reduced by replacing c I in the above 
formula by an average of (say) 10 successive observations. 

From the time-varying values of w obtained in the ways just described, 
we can calculate a time-varying quantity I* defined (12) by 

( l * - ) 1 / 3  

with w s and C as in Eq. (2.9); the interpretation of I* is that clusters larger 
than l* tend to grow and clusters smaller than l* to shrink. It turns out that 
l* increases monotonically with time and so it provides a convenient link 
between the time variables in the simulation and the Becker-Drr ing 
solution, enabling us to determine/~. 

Figure 2 shows a graph of pairs of values of ~- and t which correspond 
to the same value of l*. According to Eq. (4.10) the slope of the graph gives 
the value of /~. We see that over most of the time range considered 
(1000 < t < 7000, corresponding to 20 < l* < 200) the value of /z  is con- 
stant at about 3.3; but for earlier times it is larger than 3.3. Thus/~ cannot 
be a function of P alone; it seems also to depend on the density of small 
clusters, of which l* is a convenient measure. Further information can be 
obtained by making similar comparisons at other values of the total 
concentration p; for P = 0.05 and 0.1 this was done by Buhagiar. (~3) He 
found similar behavior, the value of ~t again being not far from 3 as long as 
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Fig. 2. Pairs of values of t, the time variable in the simulation, and ~-, the time variable in the 
Becker-Dgring equations, which correspond to the same critical cluster size l*. The equation 
of the straight line shown is T = 3.3(t + 400). The temperature is 0.59T c and the overall 
concentration is 0.075. 
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l* was greater than 20 or 30. Thus it appears that the value of /z is 
determined mainly by I* rather than by p, that for values of l* between 
about 20 and 200 it takes values not far from 3.3, regardless of the overall 
concentration p, and that for smaller values of I* the value of/~ is greater 
than 3.3. We hope to return to the question of a theoretical explanation of 
these results in a separate paper, but for the present paper we treat them as 
purely empirical. 

6. THE DISTRIBUTION OF CLUSTER SIZES 

Having established the relationship between the time scales of the 
simulation and of the Becker-D6ring equations we can now test the values 
of c l predicted by the equations against those observed in the simulation. 
For small clusters (l < 10 or 20), we have already noted that the distribu- 
tions for both the simulation and the differential equation agree well with 
the equilibrium distribution (2.5) for suitable (time-dependent) values of w. 
Our method of relating the time variables t and ~- ensures automatically 
that the "predicted" value of w is always equal to the observed value, and 
so the agreement of observed and predicted distributions for small clusters 
is also ensured automatically. 

For larger clusters (l/> 10 or 20), our test is illustrated in Fig. 3. Each 
curve is the distribution predicted by the Becker-D6ring equations for 
some value of ~-, and hence of l*; the corresponding histogram shows values 
of c t observed in the simulation at the same value of l*, averaged over 
blocks of consecutive values of l large enough to smooth out most of the 
fluctuations. (It turned out that a good choice for the number of values of l 
in each block was about ~' l*.) 

Comparison of the graphs and histograms indicates that the agreement 
between prediction and observation is good if l* < 67. For a value of l* 
somewhere between 67 and 98 a local maximum and minimum appear in 
the distribution; this phenomenon is correctly predicted by the Becker- 
D6ring equations. For larger values of l* the agreement is still quite good 
for values of ! larger than the position of the maximum (a more detailed 
discussion of the large clusters is given by Buhagiar~'3~), but the Becker- 
D6ring equations underestimate the values of I at which these maxima and 
minima occur. 

7. COMPARISON WITH EXPERIMENT 

It was pointed out by Lifshitz and Slyozov <7) that for very large values 
of l* the distribution of large clusters may be expected to exhibit a simple 
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Fig. 3. Comparison of cluster size distributions ct, for l /> 20, given by computer simulation 
(histograms) and by the Becker-D/Jring system of differential equations (continuous curves). 
The temperature is 0.59T c and the overall concentration is 0.075. 
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scaling property: that the number of particles in clusters larger than l is a 
function of l / l* alone so that c t is equal to l , -2  times a function of l/l*. 

Experimentally we measure not the number of particles in a cluster but 
its radius, which may be assumed proportional to l 1/3 where l is the 
number of particles. The observed distribution of cluster sizes can be 
described by giving the number of clusters per unit radius increment, which 
is proportional to 12/3et. According to the scaling property, this quantity 
should be equal to 12/3l *-2 times a function of l/l*, and consequently/,4/3 
times this quantity should be a function of l / l* - -and  hence, also, a 
function o f  (Ill*) 1/3. Figure 4 s h o w s  1"4/312/3Cl plotted against (l / l*) 1/3, 
both for theory and experiment. 

The predictions given by the Becker-D6ring equation confirm the 
scaling hypothesis and fit the experimental results somewhat better than the 
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Fig. 4. Plot of a quantity proportional to 12/3c/, which in turn is proportional to the 
distribution of cluster radii, against (l/l*) ~/3, the ratio of cluster radius to critical cluster 
radius. One curve is the prediction of the Becker-D6ring equations; the other that of the 
Lifshitz-Slyozov theory. Experimental results for a 6.35% A1-Ni alloy 72 hr after quenching to 
625~ taken from a paper by Ardell and Nicholson (Ref. 5), are also shown. 
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scaling function predicted by Lifshitz and Slyozov, which is 

X2 [ ~ 7/3 ll/3exp ) if x < - -  
2 

3 0 if x > - ~  

where x = (l/l*) 1/3. In particular the incorrect prediction that there are no 
clusters at all with l/l* > 3 /2  is avoided. Further details of this comparison 
are given by Buhagiar. (13) 

8. DISCUSSION 

The comparisons made in the previous section give some confirmation 
of the method used in Sections 3 and 4 for calculating the coefficients in 
the Becker-D6ring kinetic equation for nucleation. This method, it will be 
recalled, was to calculate coefficients for cluster sizes 1 to 6 using a 
diffusion model, and then to extrapolate to larger values of l using the idea 
of Lifshitz and Slyozov that these coefficients should be proportional to l 1/3 
for large l. 

Our work shows that the resulting system of differential equations is 
helpful in representing the behavior of both real and simulated clusters, for 
a three-dimensional lattice gas at temperature 0.59T c and density 0.075. 
The most apparent defect in the representation provided is that the time 
scale is wrong, the theory predicting rates of change which are too small by 
a factor of about 3.3. The reason for this discrepancy is not understood at 
present, but it appears to be due to the fact that the low-density theory 
upon which our calculations are based needs modification before it can be 
applied at densities as high as 0.075. 

In the low-density theory the only processes considered are the absorp- 
tion or emission of a monomer by some cluster; but at higher densities a 
significant fraction of the particles are in dimers and larger clusters, so that 
processes such as the absorbtion and emission of dimers, ignored in this 
paper, may have quite a large effect on the transport of matter near a 
cluster. In the present paper these density effects were lumped together in 
the empirical parameter/~ whose value appears to depend mainly on the 
concentration of monomers rather than on the overall density. It is hoped 
to return in a later paper to the question of whether this procedure has any 
theoretical justification, and if so whether/~ can be calculated from first 
principles. 

Ours is not the first calculation in which the Becker-D6ring system of 
equations, or some generalization of them, was used to predict the time 
variation of the cluster size distribution. Calculations using the Becker- 
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D6ring equations themselves have been reported by Courtney (14) and 
Abraham, (2) and calculations using a generalized form of these equations, 
which allows for processes involving clusters none of which are monomers, 
were reported by Mirold and Binder. (15) However, in all these calculations 
at(0 ) was taken to be proportional, at large l, to /2 /3 - - tha t  is to the surface 
area of a sphere of volume / - - ra ther  than to l 1/3 as required by the 
Lifshitz-Slyozov diffusion mechanism. Moreover, in the calculations of 
Courtney and of Abraham, the time variation of c I was neglected; this is a 
legitimate approximation at very low concentrations, for which nearly all 
the small clusters are monomers, but not at the higher concentrations, such 
as 0.075, which interest us here. The reason for our interest in higher 
concentrations is that we wished to compare our results with those of 
computer simulations, and at very low concentrations such simulations are 
too slow and costly to be useful. The calculations of Mirold and Binder, (15) 
on the other hand, do apply at concentrations as high as 10% and 20% and 
their results show some similarity to ours. A more detailed comparison of 
their treatment with ours might provide useful information; but it would 
require, among other things, more information about the value of l* and 
the results for clusters with l > 50 than is provided in Mirold and Binder's 
paper. 

Finally, it remains to discuss our neglect of the time variation of the 
spatial distribution of one-body clusters near a given cluster; in Section 3 
this approximation enabled us to pass from the non-steady-state kinetic 
equation (3.3), which is analogous to the diffusion equation, to the steady- 
state equation (3.4) which is analogous to the Laplace equation. In order to 
judge the validity of the approximation we want to estimate the importance 
of two effects: (i) the time variation of the size of the central cluster, which 
affects the "inner" boundary condition (3.21), and (ii) the time variation of 
the overall concentration of one-body clusters, which affects the "outer" 
boundary condition (3.6). 

The first effect, time variation of the size of the central cluster, can be 
estimated by imagining this cluster to be a sphere of radius R, where 
4 7/'R 3 = l is the number of particles in the cluster. Assuming that l > l* so 

that on average the cluster is growing, let us denote the flux of particles 
diffusing inwards at the surface of the sphere by J, so that d l /d t  = 4~rR2J 
and d R / d t  = J. Now the inward flux J is mainly due to diffusion of 
one-particle clusters, and therefore corresponds to a mean drift velocity for 
these clusters of J / c  1. Thus the mean velocity of advance of the surface of 
the cluster, d R / d t ,  is about c 1 times the mean drift velocity: this indicates 
that when formulating the diffusion problem we may neglect the variability 
of mean cluster size provided that c 1 is not too large. In the simulation that 
mainly interests us here the value of c 1 was never greater than about 0.05 
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and hardly ever greater than about 0.025; so this neglect is unlikely to be a 
serious source of error. 

The other effect noted above is the time variation of c 1, the overall 
concentration of one-body clusters. If c l changes with time, it is because 
one-body clusters are being created or destroyed as a result of net emission 
or absorbtion of one-body clusters from larger clusters. Except in the 
vicinity of the central cluster, these large clusters may be assumed to be 
uniformly distributed, on the average, so that one-body clusters are being 
created or destroyed at the same rate, namely, de]/dr, everywhere. In the 
vicinity of the central cluster, however, the rate of creation of one-body 
clusters may be nonuniform, and there will also be some rearrangement of 
the spatial distribution of clusters as c 1 changes. 

A crude estimate of the resulting flux of diffusing particles can be 
obtained by supposing the region near the central cluster to be a sphere of 
radius (say) 3R and that the rate at which particles accumulate in it or 
leave it as a result of changes in e 1 is (at most) dc] /d t  times its volume, i.e., 
4 ~r(3R)3del/dt. Dividing this quantity by the area of the sphere, which is 

4~r(3R) 2, we find that the flux is roughly R ( d c l / d t  ). Using the formula 
(5.3) in the simplified form 

where q is the saturation (i.e., equilibrium) value of c l, we find 

dcl cs - cl dl* 
dt 3/* dt 

c ~ -  c 1 
- 3 t  ( 8 . 2 )  

since I* ec t according to the Lifshitz-Slyozov theory. (7) Thus we may 
estimate of the fluxes due to the changes in c 1 to be at most Rlcs - cl]/3t ,  
whereas the fluxes accounted for in the main calculation are, as we have 
just seen, of order d R / d t  or c ruddy R / t .  So the fluxes due to the changes 
in c 1 are smaller by a factor estimated here as Ics - cd/3, which was hardly 
ever as large as 1% in the simulations associated with this paper. Thus both 
sources of time variation lead to particle fluxes which are small compared 
with the fluxes taken into account in our main calculation, and our neglect 
of time variation in solving the basic equation (3.4) is justified. 
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